Physical Review Fluids

Subscribe to Physical Review Fluids feed
Recent articles in Physical Review Fluids
Updated: 18 hours 32 min ago

Transient energy growth in channel flow with compliant walls

Tue, 04/09/2024 - 11:00

Author(s): Frédéric Alizard, Benoît Pier, and Smail Lebbal

Shear flows in contact with compliant boundaries exhibit a rich dynamics involving traveling-wave-flutter, Tollmien-Schlichting, as well as divergence instabilities. In this context, maximum transient growth effects are the result of optimal energy exchanges during the fluid-structure interaction process. The present investigation studies the detailed contribution of the different interacting modes. In particular, it is found that the optimal gain may be associated with a large-amplitude oscillatory behavior and that wall-compliance enhances this phenomenon.


[Phys. Rev. Fluids 9, 043905] Published Tue Apr 09, 2024

Lagrangian coherent structures control solute dispersion in heterogeneous poroelastic media

Tue, 04/09/2024 - 11:00

Author(s): Junhong Wu, Daniel Lester, Michael G. Trefry, and Guy Metcalfe

This study focuses on how Lagrangian coherent structures (LCSs) control solute dispersion in heterogeneous poroelastic media (HPM). We show how interactions between medium compressibility, conductivity heterogeneity, and periodic forcing give rise to complex flows and diverse LCS types (KAM islands, chaotic saddles, etc) that have profound impacts on diffusive solute transport (main image) that do not arise in the steady counterpart (inset). Strongly anomalous transport impacts both spatial moments and residence time distributions and persists at low Péclet numbers. This study reveals the complex transport phenomena that can arise in HPM and shows how LCSs govern solute dispersion.


[Phys. Rev. Fluids 9, 044501] Published Tue Apr 09, 2024

Lagrangian modeling of a nonhomogeneous turbulent shear flow: Molding homogeneous and isotropic trajectories into a jet

Tue, 04/09/2024 - 11:00

Author(s): Bianca Viggiano, Thomas Basset, Mickaël Bourgoin, Raúl Bayoán Cal, Laurent Chevillard, Charles Meneveau, and Romain Volk

We propose a novel approach to accurately model complex flow, ultimately predicting the behavior of a turbulent jet by molding a set of velocity signals input from an idealized flow (readily available from numerical databases online). The model uses fundamental properties of the jet, such as velocity means and standard deviations, easily accessible from textbooks, experiments, or low-order simulations (RANS, LES). The modeled jet reproduces many subtle and intricate properties of the turbulent flow, including the intermittent extreme events known to exist in turbulent flows, which have been typically thought of as not capable of being captured with current modeling techniques.


[Phys. Rev. Fluids 9, 044604] Published Tue Apr 09, 2024

Experimental study of the turbulence ingestion noise of rotor blades

Tue, 04/09/2024 - 11:00

Author(s): Han Wu, Yuhong Li, Xin Zhang, Siyang Zhong, and Xun Huang

In this work, we experimentally investigate turbulence ingesting rotor noise under various thrusting states. The broadband noise caused by turbulence ingestion is found to dominate at the normalized frequency range of fR/U∞ = 20 to 80 when the rotor is under low-thrusting conditions. Results also suggest that the turbulence ingestion broadband noise can be scaled by Mach number scaling of M∞2Mc4, where M∞ is the freestream Mach number, and Mc is the corresponding blade tip Mach number.


[Phys. Rev. Fluids 9, 044801] Published Tue Apr 09, 2024

Internally heated and fully compressible convection: Flow morphology and scaling laws

Tue, 04/09/2024 - 11:00

Author(s): Whitney T. Powers, Evan H. Anders, and Benjamin P. Brown

In stars and planets natural processes heat convective flows in the bulk of a convective region rather than at hard boundaries. Internally heated convection has been studied extensively in incompressible fluids, but the effects of stratification and compressibility have not been examined in detail. In this work, we study fully compressible convection driven by a spatially uniform heating source in a suite of two- and three-dimensional Cartesian, hydrodynamic simulations. We characterize how Mach, Reynolds, and Nusselt numbers scale with the characteristic strength of the internal heat source. We also measure kinetic energy power spectra and discuss the flow morphologies.


[Phys. Rev. Fluids 9, 043501] Published Tue Apr 09, 2024

Floquet stability analysis of pulsatile flow in toroidal pipes

Tue, 04/09/2024 - 11:00

Author(s): J. Simon Kern, Valerio Lupi, and Dan S. Henningson

Unsteady flows in curved pipes are ubiquitous in science and engineering but their stability characteristics are not well understood in most cases of practical interest. We study the linear stability of pulsatile flow in the archetypal configuration of a toroidal pipe, which appears e.g. in aortic blood flow. The Floquet stability analysis of the harmonically forced system reveals that the curvature leads to nonlinear interactions in the baseflow andconsiderable stabilization that can be orders of magnitude larger than in the corresponding planar case. The figure shows a typical snapshot of the streamwise velocity field in a torus subject to a pulsating pressure gradient.


[Phys. Rev. Fluids 9, 043906] Published Tue Apr 09, 2024

Dense fluid transport through nanoporous graphene membranes in the limit of steric exclusion

Tue, 04/09/2024 - 11:00

Author(s): Runfeng Zhou, Mathew M. Swisher, Akshay Deshmukh, Chengzhen Sun, John H. Lienhard, and Nicolas G. Hadjiconstantinou

We develop a model that describes the permeance of simple fluids as well as small hydrocarbon molecules through nanoporous, atomically thin membranes. The model is in agreement with molecular dynamics simulations for a wide range of pore sizes, including pores approaching the steric exclusion limit, as needed for understanding separation processes using such membranes.


[Phys. Rev. Fluids 9, 044202] Published Tue Apr 09, 2024

Effects of wall conductivities on magnetoconvection in a cube

Mon, 04/08/2024 - 11:00

Author(s): Hai-Tao Zhu, Long Chen, and Ming-Jiu Ni

This numerical simulation investigates the vertical convection of liquid metal with varying magnetic fields and wall conductivities. The applied horizontal magnetic field alters plume dynamics and topology, leading to a more coherent large-scale flow structure but weakening convection through Joule dissipation. This competition between rectification and magnetic damping determines the magnetic field’s impact on heat transfer, with the quasi-two-dimensional state being the threshold. Our analysis demonstrates that while the plume area remains constant, condensation of coherent structures enhances horizontal heat transport per unit area, significantly improving overall heat transfer.


[Phys. Rev. Fluids 9, 043701] Published Mon Apr 08, 2024

Dynamics of rigid fibers interacting with triangular obstacles in microchannel flows

Mon, 04/08/2024 - 11:00

Author(s): Zhibo Li, Clément Bielinski, Anke Lindner, Olivia du Roure, and Blaise Delmotte

We combine experiments and numerical simulations to investigate the interaction between a rigid fiber and a triangular obstacle in a microfluidic channel. We find different dynamics depending on the initial position and orientation of the fiber. We show that these dynamics are dictated by the fiber configuration in the vicinity of the obstacle. Some dynamics induce a cross-stream migration which grows with the fiber length. Our findings could in the future be used to design and optimize microfluidic sorting devices to sort rigid fibers by length.


[Phys. Rev. Fluids 9, 044302] Published Mon Apr 08, 2024

Pages