Latest papers in fluid mechanics

Impact of hydraulic tortuosity on microporous and nanoporous media flow

Physical Review E - Fri, 02/23/2024 - 10:00

Author(s): Shiwani Singh

Using two-dimensional porous structures made up of homogeneously arranged solid obstacles, we examine the effects of rarefaction on the hydraulic tortuosity in the slip and early transition flow regimes via extended lattice Boltzmann method. We observed that modification in either the obstacle's arr…


[Phys. Rev. E 109, 025106] Published Fri Feb 23, 2024

Measurement of an eddy diffusivity for chaotic electroconvection using combined computational and experimental techniques

Physical Review Fluids - Fri, 02/23/2024 - 10:00

Author(s): Arunraj Balaji-Wright, Felix Stockmeier, Richard Dunkel, Matthias Wessling, and Ali Mani

The Poisson-Nernst-Planck-Stokes equations capture the chaotic dynamics of electroconvection accurately, but direct numerical simulation of electroconvection is prohibitively expensive. Furthermore, prediction of the mean fields via application of Reynolds averaging leads to a closure problem. In this work, we combine the macroscopic forcing method, a numerical technique for measurement of closure operators in Reynolds-averaged equations, with high-fidelity experimental data in order to determine a leading order closure for chaotic electroconvection. Simulations of the Reynolds-averaged equations using the leading order closure accurately predict experimental polarization curves.


[Phys. Rev. Fluids 9, 023701] Published Fri Feb 23, 2024

Plume-surface interaction during lunar landing using a two-way coupled DSMC-DEM approach

Physical Review Fluids - Fri, 02/23/2024 - 10:00

Author(s): A. Bajpai, A. Bhateja, and R. Kumar

In this investigation, a novel two-way coupled gas-granular solver is developed, incorporating direct simulation Monte Carlo (DSMC) for gas particle collisions and discrete element method (DEM) for granular particle interactions. Gas-grain interaction model consists of momentum and energy exchange between the two phases. Using this framework, we have performed a comprehensive study of dust dispersion due to plume impingement on a lunar surface. We have predicted not only the velocity field of gas and grain phases, but also their temperature field, which can be meaningful information for spacecraft designers.


[Phys. Rev. Fluids 9, 024306] Published Fri Feb 23, 2024

Trapping of inertial particles in a two-dimensional unequal-strength counterrotating vortex pair flow

Physical Review Fluids - Fri, 02/23/2024 - 10:00

Author(s): Zilong Zhao, Zhiwei Guo, Zhigang Zuo, and Zhongdong Qian

This study indicates that small inertia particles can be trapped in a two-dimensional unequal-strength counter-rotating vortex pair (CVP) flow. Through analytical derivations of the particle motion in the potential CVP flow, this study first identifies a particle-attracting ring S0.


[Phys. Rev. Fluids 9, 024307] Published Fri Feb 23, 2024

Bounded flows of dense gases

Physical Review Fluids - Thu, 02/22/2024 - 10:00

Author(s): Sergiu Busuioc and Victor Sofonea

Numerical solutions of the Enskog equation obtained employing a Finite-Difference Lattice Boltzmann (FDLB) with half-range Gauss-Hermite quadratures and a Direct Simulation Monte Carlo (DSMC)-like particle method (PM), are systematically compared to determine the range of applicability of the simplified Enskog collision operator implemented in the Lattice Boltzmann framework. For low to moderate reduced density, the proposed FDLB model exhibits commendable accuracy for all bounded flows tested in this study, with substantially lower computational cost than the PM method.


[Phys. Rev. Fluids 9, 023401] Published Thu Feb 22, 2024

Pages

Subscribe to www.nonequilibrium-turbulence.org.uk aggregator - Latest papers in fluid mechanics