Physical Review E

Subscribe to Physical Review E feed
Recently published articles in Phys. Rev. E in the Table of Content section "Fluid dynamics"
Updated: 18 hours 14 min ago

Negative acoustic radiation force induced on an elastic sphere by laser irradiation

Mon, 11/26/2018 - 10:00

Author(s): Hai-Qun Yu, Jie Yao, Da-Jian Wu, Xue-Wei Wu, and Xiao-Jun Liu

We propose an alternative strategy to modulate the acoustic radiation force (ARF) acting on an elastic sphere (ES) using laser irradiation. A mathematical model of the interaction of the acoustic plane wave with the laser-irradiated ES is developed to calculate the ARF acting on the ES. It is demons...

[Phys. Rev. E 98, 053105] Published Mon Nov 26, 2018

Three-dimensional transition of zero-pressure-gradient boundary layer by impulsively and nonimpulsively started harmonic wall excitation

Mon, 11/26/2018 - 10:00

Author(s): Pushpender Sharma, Tapan K. Sengupta, and Swagata Bhaumik

A three-dimensional (3D) transition route for zero-pressure-gradient boundary layer over a flat plate is computationally investigated, for impulsive and nonimpulsive startup of harmonic wall excitation. A monochromatic frequency of excitation is chosen to perturb the boundary layer. The exciter plac...

[Phys. Rev. E 98, 053106] Published Mon Nov 26, 2018

Front evaporation effects on wicking in two- and three-dimensional porous domains

Fri, 11/16/2018 - 10:00

Author(s): Eric M. Benner and Dimiter N. Petsev

We present the equations for wicking in two- and three-dimensional porous media when liquid is evaporating through the wet front using the Green–Ampt saturated capillary flow model in polar and spherical geometries. The time-dependent behavior of two-dimensional wicking influenced by front interface...

[Phys. Rev. E 98, 053104] Published Fri Nov 16, 2018

Particle velocity distributions and velocity fluctuations of non-Brownian settling particles by particle-resolved direct numerical simulation

Fri, 11/09/2018 - 10:00

Author(s): Ali Abbas Zaidi

Settling dynamics of non-Brownian particles is investigated using particle-resolved direct numerical simulations. There are two aims of this paper: first is to study the variation of particle velocity fluctuations with solid volume for a wide range of settling Reynolds number; second is to investiga...

[Phys. Rev. E 98, 053103] Published Fri Nov 09, 2018

Axial and radial patterns of a bidispersed suspension in a fully filled horizontal rotating cylinder

Tue, 11/06/2018 - 10:00

Author(s): John C. Nasaba and Anugrah Singh

We report on the pattern formation in a horizontal rotating cylinder fully filled with bidispersed suspension composed of non-Brownian settling and floating particles. The effect of particle mixing of different buoyancy and shape on the axial and radial pattern formation was investigated using flow ...

[Phys. Rev. E 98, 053102] Published Tue Nov 06, 2018

Counterion flow through a deformable and charged nanochannel

Thu, 11/01/2018 - 10:00

Author(s): Mpumelelo Matse, Peter Berg, and Michael Eikerling

A theoretical model is developed that describes nonlinear coupling between wall deformation and water and ion flows in a charged, deformable nanochannel whose viscoelasticity is governed by the Kelvin-Voigt model. Using continuum mean-field theories for mass and momentum conservation of the solid-li...

[Phys. Rev. E 98, 053101] Published Thu Nov 01, 2018

Slip-flow lattice-Boltzmann simulations in ducts and porous media: A full rehabilitation of spurious velocities

Mon, 10/29/2018 - 10:00

Author(s): M. Aminpour, S. A. Galindo-Torres, A. Scheuermann, and L. Li

Slip flow in ducts and porous media is simulated using lattice-Boltzmann method incorporated with interfacial force models. The dependence of the results on the viscosity, LBM scheme (D3Q15 and D3Q19) and the relaxation time model (single- or multirelaxation time) is investigated. The severity of sp...

[Phys. Rev. E 98, 043110] Published Mon Oct 29, 2018

Vesicle dynamics in confined steady and harmonically modulated Poiseuille flows

Mon, 10/29/2018 - 10:00

Author(s): Zakaria Boujja, Chaouqi Misbah, Hamid Ez-Zahraouy, Abdelilah Benyoussef, Thomas John, Christian Wagner, and Martin Michael Müller

We present a numerical study of the time-dependent motion of a two-dimensional vesicle in a channel under an imposed flow. In a Poiseuille flow the shape of the vesicle depends on the flow strength, the mechanical properties of the membrane, and the width of the channel as reported in the past. This...

[Phys. Rev. E 98, 043111] Published Mon Oct 29, 2018

Large-eddy simulations of turbulent thermal convection using renormalized viscosity and thermal diffusivity

Wed, 10/24/2018 - 11:00

Author(s): Sumit Vashishtha, Mahendra K. Verma, and Roshan Samuel

In this paper we employ renormalized viscosity and thermal diffusivity to construct a subgrid-scale model for large eddy simulation (LES) of turbulent thermal convection. For LES, we add νren∝Πu1/3(π/Δ)−4/3 to the kinematic viscosity; here Πu is the turbulent kinetic energy flux, and Δ is the grid s...

[Phys. Rev. E 98, 043109] Published Wed Oct 24, 2018

Force on a compressible sphere and the resonance of a bubble in standing surface acoustic waves

Tue, 10/23/2018 - 11:00

Author(s): Shen Liang, Wang Chaohui, and Hu Qiao

In this paper, the theory for acoustic radiation force exerted by standing surface acoustic waves (SSAWs) is extended to a compressible sphere in inviscid fluids. The conventional theory, developed in plane standing waves, fails to predict the radiation force incident on particles in the SSAW. Our e...

[Phys. Rev. E 98, 043108] Published Tue Oct 23, 2018

Beyond the coffee-ring effect: Pattern formation by wetting and spreading of drops

Fri, 10/19/2018 - 11:00

Author(s): Dileep Mampallil, Meenakshi Sharma, Ashwini Sen, and Shubham Sinha

Drying of colloidal drops on solid surfaces is the widely known method to form self-assembled patterns. The underlying principle of this method is the phenomenon known as the coffee-ring effect. Here, we report a phenomenon of pattern formation involving not drying but conversely wetting and spreadi...

[Phys. Rev. E 98, 043107] Published Fri Oct 19, 2018

Thermally induced interfacial instabilities and pattern formation in confined liquid nanofilms

Mon, 10/15/2018 - 11:00

Author(s): Hadi Nazaripoor, M. R. Flynn, Charles R. Koch, and Mohtada Sadrzadeh

The dynamics, instability, and pattern formation of thermally triggered thin liquid films are investigated numerically under a long-wave limit approximation. To determine the mechanisms responsible for instability growth and pattern formation in confined heated nanofilms, acoustic phonon (AP) and th...

[Phys. Rev. E 98, 043106] Published Mon Oct 15, 2018

Trapping of plasma enabled by pycnoclinic acoustic force

Fri, 10/12/2018 - 11:00

Author(s): John P. Koulakis, Seth Pree, Alexander L. F. Thornton, and Seth Putterman

Sound can hold partially ionized sulfur at the center of a spherical bulb. We use the sulfur plasma itself to drive a 180 dB re 20 μPa sound wave by periodically heating it with microwave pulses at a frequency that matches the lowest order, spherically symmetric, acoustic resonance of the bulb. To c...

[Phys. Rev. E 98, 043103] Published Fri Oct 12, 2018

Size and shape affect swimming of a triangular bead-spring microswimmer

Fri, 10/12/2018 - 11:00

Author(s): Mohd Suhail Rizvi, Alexander Farutin, and Chaouqi Misbah

We investigate analytically the transport characteristics of the triangular bead-spring microswimmer and its dependence on the sizes of the beads as well as on the relative bead configurations. The microswimmer is composed of three beads connected by linear springs in an isosceles triangular arrange...

[Phys. Rev. E 98, 043104] Published Fri Oct 12, 2018

Mach number effect on the instability of a planar interface subjected to a rippled shock

Fri, 10/12/2018 - 11:00

Author(s): Wenbin Zhang, Qiang Wu, Liyong Zou, Xianxu Zheng, Xinzhu Li, Xisheng Luo, and Juchun Ding

The Richtmyer-Meshkov (RM) instability of a planar interface (N2−SF6) subjected to a sinusoidal rippled shock, as the variant of a sinusoidal interface impinged by a planar shock, is investigated through high-order compressible multicomponent hydrodynamic simulations. The rippled shock is generated ...

[Phys. Rev. E 98, 043105] Published Fri Oct 12, 2018

Influence of wettability on phase connectivity and electrical resistivity

Mon, 10/08/2018 - 11:00

Author(s): Zhishang Liu, James E. McClure, and Ryan T. Armstrong

Experimental results have shown that resistivity index can deviate from Archie's law at low conductive phase saturation. Previous works have claimed that wettability and flow history are the two main factors causing this phenomenon. Herein, we investigate how the underlying fluid morphology influenc...

[Phys. Rev. E 98, 043102] Published Mon Oct 08, 2018

Self-assembly of a drop pattern from a two-dimensional grid of nanometric metallic filaments

Thu, 10/04/2018 - 11:00

Author(s): Ingrith Cuellar, Pablo D. Ravazzoli, Javier A. Diez, Alejandro G. González, Nicholas A. Roberts, Jason D. Fowlkes, Philip D. Rack, and Lou Kondic

We report experiments, modeling, and numerical simulations of the self–assembly of particle patterns obtained from a nanometric metallic square grid. Initially, nickel filaments of rectangular cross section are patterned on a SiO2 flat surface, and then they are melted by laser irradiation with ∼18-...

[Phys. Rev. E 98, 043101] Published Thu Oct 04, 2018